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Abstract 

The matrix method for the calculation of diffuse 
scattering has been applied to linearly disordered 
crystals. Although it is shown that the matrix method 
and the difference formula are equivalent for equal 
length cells, the algebraic and computational advan- 
tages of the matrix method are stressed and are 
illustrated by the example of short-range order in 
hollandite, K 1.54Mgo.TvTiT.23 O 16" 

in position n + 1 depends at most on the particular 
atom or group at position n. Much of the work on the 
matrix method for planar disorder (Takaki & Sakurai, 
1976 and references therein) has centered on a 
formalism where finding a particular layer to follow the 
nth also depends on the n - 1 and more remote 
neighbors; this sort of extension is also possible for the 
linear case. 

2. Derivation of the general formula 

1. Introduction 

Recent interest in highly conducting molecular systems 
has resulted in the synthesis of many new quasi one- 
dimensional crystalline materials (Keller, 1977; Miller 
& Epstein, 1976; Marks, 1978). Many of these systems 
exhibit diffuse scattering characteristic of linear dis- 
order (Endres, Keller, Megnamisi-Belombe, Moroni, 
Pritzkow, Weiss & Com6s, 1976; Smith & Luss, 1977; 
Huml, 1967; Herbstein & Kapon, 1972; Cowie, 
Gleizes, Grynkewich, Kalina, McClure, Scaringe, 
Teitelbaum, Ruby, Ibers, Kannewurf & Marks, 1979). 
It is therefore necessary to interpret the diffuse as well 
as the Bragg scattering in order to understand fully the 
structures of these new systems. The theoretical frame- 
work for the calculation of the diffraction of X-rays 
from systems displaying planar disorder has received a 
great deal of attention. The two general methods 
developed are the difference equation (Jagodzinski, 
1949a,b,c; Wilson, 1942) and the matrix method 
(Kakinoki & Komura, 1952; Hendricks & Teller, 
1942; Takaki & Sakurai, 1976). However, there have 
been relatively few general discussions in the literature 
of linear disorder (Guinier, 1963) and none, as far as 
we know, of the application of the matrix method to 
such systems. In the present paper we treat by the 
matrix method the problem of diffuse scattering from a 
linearly disordered crystal and point out in several 
examples the calculational advantages of the method 
over the difference equation. 

We restrict ourselves to systems where the pro- 
babilities of finding a particular atom or group of atoms 
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Consider a crystal to be made up of a series of parallel 
columns; the two primitive intercolumn vectors are a 
and b. The vector from the origin to the kth atom in the 
nth column is 

R,,.k= n l a  + n2b + x a  + y b +  Z,,.k¢:, 

where ~ is a unit vector in the column direction, n refers 
to the two whole numbers n~, n 2 and x, y are the usual 
fractional coordinates. Letting s = aa* + fib* + y~.* be 
the scattering vector, a, fl, y being continuous variables 
in reciprocal space, the diffracted field from all atoms in 
the crystal becomes 

e = ~ exp [2zcis. (n 1 a + n 2 b + x a  + yb)] 
n 

X ~, fn.i exp [2rds. ~,Zn, i] , 
i 

wheref,.i  is the atomic scattering factor. If we define the 
structure factor of the nth column as C, = 
Y ,  Y if , . i  exp (2rds. ~Z,.i), the expression for the inten- 
sity is: 

I ( s ) =  ee*= Z Y~ exp[-2z~is.(t, ,  - t,)]C,C,*, (1) 
n n I 

where t n = n~ a + n 2 b. If all terms in the double sum 
that contain the vector t m = (nl - nl)a + (n~ - nz)b = 
m I a + m 2 b are grouped together, (1) becomes: 

I(s) = C n Cn+ m exp(-2zcis.tm). 

© 1979 International Union of Crystallography 

(2) 
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For  a sufficiently large number of terms, the sum over n 
becomes Km(C . C,+m), where Km is the number of 
terms in the sum and is numerically equal to AA (tm)/a. 
Here, A is the cross-sectional area of the crystal, a = 
a. b and AA(tm) is the area common to the crystal and 
an identical crystal displaced by vector tm. For a 
parallelepiped crystal with N~ cells along a and N 2 cells 
along b, (2) becomes: 

I(s) =- ~. ~. (U~ -- Ira11)(U 2 - Im21)(C n Cn+m)* 
m l  m2 

x exp (--2his. tm). (3) 

If we l e t ( C  n * Cn+m ) = I(Cn ) 12 + ~"~m, (3) becomes: 

I ( s ) =  I (Cn) l  2 Z Z  ( N , - [ m , I ) ( N  2 -  Ira21 ) 
t?l 1 /7l 2 

× exp (--2~is. tin) 

+ Z Z f~m(N, - Im, l)(N2--Im21) 
m l  m2 

x exp (--2~is. tm). (4) 

The sum over m can be evaluated explicitly for the first 
term and (4)becomes:  

{sin2(naNl)){sin2(nflNz) 
I(s)= l(Cn)l 2 

sinZ(na) sinZ (nil) 

+ Z Z (N,--Im,I)(N z -  Im21)f~ m 
m t  m 2  

x exp (--2his. tin). (5) 

The first term in (5) is small unless a and fl are integral 
and then it expresses Bragg's law for the ab plane. The 
quantity I (C ,  )12 is an implicit function of ),, and the 
interference along the average column (if any) will 
determine the c spacing. The second term in (5) 
contains all of the information on the diffuse scattering. 
In this paper we shall be concerned with the evaluation 
of this term when there is no correlation between 

2 columns. In this instance, (C,C,,+m) = I(Cn)l for 
m 4: 0, and the diffuse term in (5) is 

I2(s) = N ~ N z { ( C , C * ) - ( C , ) ( C *  )} = N~N2f~ o. (6) 

Since f~0 is not a function of a or fl (neglecting the ~-~ 
sin 0 dependence), experimentally we expect planes of 
diffracted intensity, a result which is well-known 
(Guinier, 1963). We now proceed to evaluate the two 
terms in (6). 

2.1. Evaluation of ( Cj C* ) 
Suppose that each of the columns Cj can be con- 

structed by stacking N shorter segments linearly. Let 
there be R types of shorter segments each with a 
specified length levi, v = 1, 2, . . . R ,  containing qv 

atoms. The structure factor for a segment (hereafter 
called a cell) is 

q,, 
F v =  ~ fv ,~exp(2nis '%Zv,  j), v =  1,2 . . . .  R. 

j = l  

The structure factor of a column (neglecting a possible 
net phase shift) is 

N 
C =  ~ Fu exp(2n i~ . ) ,  (7) 

n = l  

where u,, = 1, 2, 3, ... R, qJ, is the phase shift resulting 
from the preceding n - 1 cells, and N is the number of 
cells. Letting q~v = 2ny e v, v = 1, 2 , . . .  R, we see that 
q~,, = ~ 7-I ~°u, and therefore ~ ,  depends on the 
lengths of the preceding n - 1 cells. With (7), we have 

( C j C ] ' )  = ( ~ n  ~Fu"Fu*'exp(iq~n)exp(iq~"')~ " n ,  (8) 

If we group all terms in the sum with the phase ~,,,, 
q~,, = q~,, + q~,,,, then (8) becomes 

( C j C T ) = Z Z  (Fu F~*+mexp(-iq~m)). (9) 
n m 

If we denote by I (m) an expression for (F , ,  Fu,+m 
exp (-iq~m)) which is independent of n, then (9) may be 
written 

N--1 
( Cj C* ) = Z ( N  --  Iml )I  (m). (10) 

m=--(N-- 1) 

Derivation of an expression for I (m) closely follows that 
given by Kakinoki & Komura  (1952) for planar dis- 
order. The result is simply stated here. 

Let the probability of finding the nth cell in a column 
of type s, s = 1, 2 . . . .  R, be e s (the existence prob- 
ability). Let Pst be the probability that the (n + 1)th cell 
in a column is of type t, given that the nth cell is of type 
s. If Pst 4: e t, the cells which make up the column are 
said to be correlated. If we define the following R x R 
matrices: 

Ii°°j, I E =  e2 0 0 ~ , 

• . . . . , . , . . .  . .  . 

IF* F, r* F= . . . .  F* 
F=I F* F' F~ F2 .. . .  F* FR ) 

\F'F,  F*F 2 .. . .  F*FR/ 
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Ill 
. . . .  

p =  1 Pz2 . . . .  P ~  

1 . . . . . .  . . . . . . . . . . .  

/;-'° ? : : • 1 =Q i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  "... ie-t~' 
Q = ~P. (11) 

Then, 
I (m) = Tr FEQ m, (12) 

where for the special case, m = 0, 

I t°) = TrFE. (12a) 

In (12), matrix products are implied and O m = O. O. O, 
m times. With (12), (10)becomes:  

N 
(CjCT) =NTrFE + Y. (N--m)TrFEQ m +conj .  (13) 

m----I 

If ( / / -  O), w h e r e / / i s  the unit matrix, is not singular 
( I / - / - -  O I 4= 0), the sum over m can be performed in 
general, and (13) becomes: 

(Cj C]') = NTrFE + NTrFEQ(H- -Q) - '  

+ TrFE(QN+I _ Q)(/- /_ Q)-2 + conj,(14) 

where Q-2 = Q-1. Q-1. 

2.2. Evaluation of (Cj)(CT) 
Except for a phase shift, the structure factor of the 

j t h  column is given by (7). Let a column begin with a 
certain cell type, s. If there are ns phase shifts possible 
for each cell of type s, then let these phase shifts be 
denoted ~'sd, J = 1, 2, . . . ,  ns, s = 1, 2, . . . ,  R. Let the 
probability that the column experiences a shift of ~'s. j 
be gs, j, t hen  ZTS=l [ ] s , j  = 1 a n d  Z j S = l ~ l s ,  j i f s ,  j = 7 ,$ .  

The probability of finding a column with a phase shift 
7,s, j with the specific sequence of N cells being F s Fu, 
fu2tu, ..- Fu,,_, is: 

lUk, sAsu = gk, s es Psul P u l u 2  " ' "  Puu-2, uu-," 

In addition to the phase shifts q/s,j, we include an 
addition set of phase shifts A j, which do not depend on 
the particular type of beginning cell. Since the Aj  can 
be averaged independently, the contribution of a single 
column to ( C )  becomes 

(A)As, n 7,s[Fs + Fu exp(--iq) s) + ...1. (15) 

Summing (15) over all s and u yields ( C ) ,  which can 
be written in expanded form as 

( A ) { s ~ . . .  ~ As,,9,,F,+ ~ . . .  ~. A s . ~ F . ,  
UN-- 1 $ Ill IJN- 1 

x exp (--iG) +.. .  + Z Z . . .  Z As, ¢s Fu~,_, 
$ biI biN- I 

x exp[--i( G + ~0u, + ...  + ~o,.,,_2)] } . (16) 

The first sum in (16) is 

= (A) (Fs  7,s), (17) 

since Y j Ply = 1. 
If we define the following R x R matrix, 

7 1  ~['/1 F 1 7 , 2  . . .  F 1 7 , R \  

V : Fz .7,R], (18) =[ Fz 7'1 F2 7,z ...  

\ F R ' 7 ,  l . . . . . . . . . . . . . . . . . .  F.'7,.// 

(17) becomes (A)TrVE. Similarly, the general ex- 
pression for the (k + 1)th term in (16) is: 

Y. Y.... Y. 7,sFuk exp[--i(CPs + rpu, + ... + rp,k_,)] 
$ Ul Uk 

x e s Psu, Psu~"" Pu,_, PuR, (19) 

since the sums over Uk+ 1, Uk+ 2 ... UN_ 1 are all unity. In 
terms of the matrix elements of Q and VE (equations 11, 
18), (19) becomes 

which by analogy with (12a) is: 

(A)Tr(VEQk). (20) 

With (18)and (20), ( C ) b e c o m e s :  

( C ) =  (A Tr(VE) + Y Tr(VEQ k) (21) 
k=l 

and 

( C ) ( C * )  = ( A ) ( A *  )(Tr(VE) 

N--1 } 
+ ~ Tr(VEQ k) {conj}. 

k=l 

In a similar manner to (14), if IQ - HI 4= 0: 

(22) 

( C )  = (A ) [T rVE  + TrVEQ(Q N - ' -  H ) ( Q - / - / ) - ' ] .  
(23) 
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2.3. Matr ix  formulat ion o f  the diffuse scattering f rom 
a linearly disordered crystal with no correlation 
between chains 

With (13), (22), and (6), the expression for the 
diffuse intensity becomes 

N - I  

12(S) = NTr(FE) + ~ ( N -  m)TrFEQ m + conj 
m = l  

- (A > <A* > Tr(VE) + TrVEQ m /conj/ .  
m = l  

(24) 

If the determinant, I / / -  Q I, is not equal to zero, the 
sums over m in (24) can be taken explicitly and from 
(14) and (23) we have, 

12(s) = NTrFE + N T r F E Q ( H -  Q)- '  

+ TrFE(Q T M  - Q ) ( H -  Q)-2 + conj 

- { (A  ) [TrVE + TrVEQ(Q N - ' -  17) 

x ( Q - / / ) - ' ] } { c o n j  }. (25) 

3. The connection between the matrix method and the 
difference formula 

If for each cell type s, c s = n s c, where n s is an integer, it 
is possible to fragment each cell into n s subcells and 
t hus ,  e - i %  : -  e - i v  for all s. The difference equation 
(Jagodzinski, 1946a,b,c; Wilson, 1942) for the diffuse 
intensity can then be written as follows:t 

N 

I2(s) Z ( F .  * -- = Fn+ m ) ( N  Iml)e -im~ 
m = --N 

-- (A ><A* >( W>( tF* >( F >( F* > 

N 

x Z ( N - - I m l ) e  -imp'. (26) 
m = - - N  

Let us write (24) symbolically as 

I2(s) = A - B B * .  

It has been shown by Kakinoki & Komura (1952) that 

( FnF*+m> = TrFEP m, (27) 

and therefore putting q~ = e -i'~ H, the first sum in (26) 
becomes identical with the A term in (24). Also, since 
multiplication by the unit matrix is commutative, the B 
term in (24) becomes 

TrVEQ m = e im'~ T r H V E P  m. (28) 

I" In the conventional notation for the difference equation, (F> 
includes the phase shifts. Here we choose to define (F> = 

If we define the diagonal R × R matrix 

/F, ~, 0 0 . . . .  O\ 

0 " ' " ' . .  i ' 
V° . . . . . . . . . . . . . . . . . . . . . . .  i:: 'FrY.tn/ 

it can be seen that V 0 M = V, where M is an R x R 
matrix with all elements equal to one. Kakinoki & 
Komura (1952) have shown that MEP" = ME. With 
this, (28) is 

TrVEQ m = e -im'p TrVE. (29) 

With (28), the BB* term in (24) can be rearranged to 
be identical with the second term in (25). Hence the 
difference formula (26) is identical with the matrix 
formulation (24) for all t& = tp. However, the labor 
involved in using (26) without the aid of (27) is often 
prohibitive, since for each problem of interest recursion 
relationships must be derived for the ( F ,  * F n +  m >. In 
final form these must give the same result as (27). 
Moreover, the matrix equation in the form of (24) or 
(25) can obviously be incorporated into a general 
computer program, thus allowing one to test with 
relative ease a large number of models. 

4. The special ease of  no correlation between the cells 
in a column 

If the cells making up any column are not correlated 
(i.e. Pst = et), the A term in (24) becomes (Kakinoki & 
Komura, 1952): 

where 

t (F*>(Fs(os> 
(CjCT> = NI(FsF*> + i-<~> 

<Fs><F* ¢*> 1 + J l -- <~o*> 

< ~OS> N -  1 
+ (F*><F~ (o,> 

( 1 -  <~,>)2 
Q0*> N- 1 

+<fs><F*~o*>(l_<~o,>)2 , (30) 

R 

(F~F*>= ~ esFsF*,  
S----I 

R 

(Fs>= ~ esFs, 
$----1 

R 

(~Ps> = Z e~e-i% 
s = l  

(31) 

R 

(Fs~Os>= Z e, sFse - '%  
$ = 1  
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Similarly,  it can be shown that  the B term in (24) m a y  
be written 

<C)=<A)[(FsF.>+(Fs>(Y.,s¢Ps>{ <¢Ps>~-' - 1 } 
( ( 0 , > -  1 ' 

R R 

where ( F  s U s ) = z  e sUs,  ( U s f ° s ) = Y  e s W s e - i %  
$ = 1  s = l  

(32) 

F r o m  (30), (32), and (24) we obtain 

< F ) ( F *  ¢p*> 
I 2 ( s )  = U (FF*> + (F*><F~o> + 

1 - - < ~ >  1 -- ( tp*) 

<F*> (F~o>(((o> N- 1) 
+ 

( 1 -  (~o>) 2 

( F ) ( F *  ~o* )((~o*) N-  I) 
+ 

(1  - -  ( ( o * ) )  2 

- (A >(A* >{(F}P'> 

<~0> N- l -  I 
+ (F>( ~o> {conj }, (33) 

(~p>-- 1 

where subscripts have been omitted. Except for the case 
< (o) = 1, the terms with N as an exponent  are of  the 
order of  unity, and for large N the diffuse scattering 
can be represented by the first term in curly brackets.  

Let us consider the ease (~0) = 1. If  at some 9' = 
F(s  = a a  + fib + ye*), ~& = 2zryc s = 2zrm s, where m s is 
any integer, (33) becomes indeterminate.  The limit of  
(33) as y - F i s :  

12(/-) = N2(F><F*> + N((FF*>-- <F><F*>) 

-- ( A > ( A * >  {<FW> + (F>< }/'>(N- I)} 

x {<F* g-'*) + <F* >< }F* )(N -- 1)}. (34) 

I f  R = 1, and we are therefore dealing with ordered 
columns containing only one cell type, ( F )  = F and 
essentially all of  the diffuse scattering is concentrated in 
the planes y = F, and (34) reduces to: 

1 2 ( / ) =  N 2 F F * ( 1 - ( A ) ( A * )  Wg**). (35) 

If the cell lengths, e s, implicit ly contained in (33) are 
integral multiples of  some length c, then (24) could be 
used instead with 

exp (--2zrR0s) = exp (--2z~R0) = exp (--2~ris. e). 

We illustrate this in the next section. 

4.1. A simple illustration 
Consider  a simple case in which each column 

consists of  a r andom mixture of  two types of cells, I 
and II, with lengths c and 2c, having one and two 

atoms, respectively (Fig. 1). For  a column composed of  
these two cells, the average site to site distance is c, the 
average displacement  is zero. 

For  this case the Bragg diffraction pattern will have a 
period c* = 1/c. In the c direction the thermal  motion 
of  the one atom per cell will appear  to be abnormal ly  
high owing to the displacements  which form the 
diatomics  in group II. 

We now wish to apply (24) and (33) to this case and 
compare  results. Intuitively, we expect the same result 
as (33) is a special case (no correlation between cells in 
a column) of  (24). For  (30) we have 

(F > = 5, F, + e,, Eli , 

((O> = e I exp (--2n'/s. e) + e,, exp [--2his. (2e)], (36) 

(F~0)  = 5 z F,  exp (-2zEis. e) + 5,, FII exp [-2zcis.  (2e)], 

where s = aa* + fib* + ye*, F,  = 1, F u = 2 
cos [2zts. e(1 -- d)]. As stated above, it is also possible 
to use (24) with all tps = ~0. In order to do this, we 
consider cell II to be two cells each with length c and 
thus for all cells ~0 = 2ztis. e. The existence probabili t ies 
e,, 52, 53 for the individual atom approach  can be 
expressed in terms of  group existence probabili t ies as 
follows: 

51 = 5i/(51 + 2e,,), e 2 = 53 = 51,/(5 ' + 25,,). (37) 

The inverse relations are: 

el = e , / (e l  + e2), e,, = e2/(5, + 52). (38) 

The other necessary quantit ies for (24) are: 

F ,  = 1, F 2 = exp (2zris.ed), F 3 = exp ( -2z r i s . ed ) ;  

tp j=2z~is .e ,  j =  1 , 2 , 3 ;  

( A ) = I ,  W , = I ,  7 * , , = c o s ( 2 n s . e ) ;  

Qm = 1-I e -im~ pro. 

The elements of  P can be deduced from Fig. 1. Given 
that we are on atom 3, the probabil i ty that atom 2 will 
be the next atom is unity. Thus,  P32 = 1, P31 = P33 = 0. 
Given that we are on atom 1 or 2 the probabi l i ty  that 1 
will be the next atom is 5,. Therefore, P , ,  = P2, = e, 

I II 

c I O - -  "d 

1, 2 . . . . .  Ot . . . . . . . . . . . . . .  1' 

3 . . . . .  O . . . . . . .  -+- . . . . .  
- d  

Fig. 1. Atomic and group labeling scheme for a linear lattice of 
mono- and diatomics. 
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and P31 = 0. Similarly, Pl3 = P23 = ~I I  and P33 = 0. 
The probability matrix is then 

P =  0 , 

1 

(40) 

or from (38), (40) may be written 

/ q / ( ~ , +  52) 0 ez/(~t+ ez)~ 

P = i  e l / ( e '+~2)  0 0  1 e 2 / ( e l + e 2 ~  " 0  

Inspection of (40) reveals that I / / -  P l = 0 and there- 
fore we cannot evaluate the sums in (24) explicitly [e.g. 
as in (25)]. As pointed out by Hendricks & Teller 
(1942), the evaluation of (24) then becomes very 
complex. However, the singularity of I / - / -  P l presents 
no practical difficulties, as (24) can be summed 
numerically on a digital computer for any case of 
interest. 

It is possible to sum (20) in the present ease for y = 
0. Here, • is the unit matrix, F = M, and TrFEP" = 
TrMEP" = TrME = 1. Thus, (24) becomes: 

I 2 ( Y = 0 ) = N + 2  )[ ( N - m ) -  N +  = 0 .  
m=l ra= l] 

(41) 

This result is to be expected since it is well known that 
for purely displacive disorder there is no diffuse 
scattering around the origin (see, for example, Guinier, 
1963). 

On the other hand, in terms of the quantities in (30) 
we have F~ = 1, F n = 2, and (~0) = 1 at 7 =  0 and (33) 
becomes 12(Y = 0) = N ( ( F F * )  - ( F ) ( F * ) )  = 
N q  en, an obviously erroneous result for q or e n 4= 0. 
The origin of this problem is apparently the tacit 
assumption in (10) that each column contains the same 
number of cells. Of necessity, then, each column would 
contain a different number of atoms which is not the 
case we are treating. Yet (24) works because there is no 
distinction between the number of atoms and the 
number of cells. Application of (33) fails only when 
(~0) = 1 (often these are the Bragg positions) and thus 
most of the scattering pattern is predicted correctly by 
the first term in (33). It is interesting to note that the 
limit of this first term in (33), which is 

(F) (F tp*) -  
lim ( F F * )  + ( F * ) ( t t p )  + = ( F F * )  
z-r  1 - (~o) 1 -  ((o*) 

( F ) ( F * ) ( c 2 ~ ) - ( c , ) ( ( F ) ( F * c ~ )  + ( F * ) ( F c s ) )  
+ 

Cs)2 
(42) 

gives the correct result for purely displacive disorder 
and ), = 0. We speculate that (42) may yield the correct 
result for all 7 = F since this is known to be the case for 

the corresponding term for planar disorder (Kakinoki 
& Komura, 1952). However, there are no practical 
difficulties as the troublesome points may be evaluated 
with the use of (24). 

5. Comparisons with experiment 

5.1. Bis(benzoquinone dioximato)niekel O. 5 iodide 

In the quasi one-dimensional material Ni(bqd)210. 5, 
(bqd = 1,2-benzoquinone dioximate), the iodine atoms 
reside in channels formed by the benzo groups of the 
metal complex (Endres, Keller, Moroni, & Weiss, 
1975). This material exhibits diffuse scattering which 
has been interpreted in terms of disorder of the iodine 
chains (Endres et al., 1976) which are shown to contain 
I 3 ions. As a very simple illustration of how the 
formalism of the previous sections may be applied, we 
derive the scattering expression for this problem. The 
displacement scheme which leads to the formation of 
the triiodide ions is shown in Fig. 2. In addition to this 
displacement, each chain undergoes separate displace- 
ment of +d 2, as a unit. Since R = 1 and e -i~, = e -iq' 

(~0 = 2zr3c, where c is the average site to site distance), 
the diffuse scattering then is concentrated in the planes, 
F = n/3c. From Fig. 2, we have F = (1 + 2 cosl2zd' 
6} - dl)l, where l' = F/3c and d I is the fractional co- 
ordinate in the cell of length 3c. Since relative to some 
fixed origin, any atom in the cell can be the first 
in the column, 

~u= ~[1 + exp (-2zri l ' /3)  + exp(+2ztil ' /3)l ,  

and since any chain must have an additional phase shift 
of +d 2, 

( A ) = ½lexp ( -  2zril' d 2) + exp ( + 2zril' d2)l. 

With the above, (35) becomes 

12(1-)/N 2 = { 1 + 2 cos [2zrl'(~} - dl)l } 2 

× (1 - (~){cos2127rl'd21}tl + 2 cos 12zd'(9112). (43) 

Endres et al. (1976), using a structure factor formalism, 
arrive at an expression which on rearrangement is 
identical with (43). However, (43) is much more easily 
obtained. 

Z=. 1 
3 

, d I 

t 

al tl I 

Fig. 2. Model with 

0 
1 
i 

i 

displaced symmetrical 13 groups for 
Ni(bqd)210.s. O Averaged position after forming 13 by displace- 
ment d r ~) New positions after shift of d 2. O Local atomic sites of 
one 1~ unit (from Endres et al., 1976). 
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5.2. Short-range order in hollandite 

As an example of the applicability of the matrix 
method to more complex problems, we will consider a 
case in which there is more than one type of column 
cell. 

The diffuse scattering arising from linear disorder in 
the material K].54Mg0.77TiT.23OI6 , hollandite, has 
recently been interpreted in terms of a four-cell model 
with no correlations between cells (Beyeler, 1976). 
Although no details are given, the model was derived 
from the difference formula method. 

The diffuse scattering in this material results from a 
combination of displacive and substitutional disorder in 
the potassium ion chain. The average site to site 
distance is 2.90 ]k = c. The reported model involves 
four cells of length 3c, 4c, 5c, and 6c; the atomic 
displacement parameters and vacancy scheme for each 
cell are given in Fig. 3. 

In terms of the parameters in (33) we have the 
following from Fig. 3: 

c 1=3c ,  c 2 = 4 c ,  c 3 = 5 c ,  c 4 = 6 c ;  

e1=0 .15 ,  e 2 = 0 . 3 7 ,  e 3 = 0 . 3 7 ,  e 4 = 0 . 1 1 ;  

F~ = exp [q(3/2 -- x)] + exp [q(5/2 + x)], 

F 2 = exp [q(3/2 -- x)] + exp [5q/2] + exp [q(7/2 + x)], 

F 3 = exp [q(3/2 - x)] + exp [q(5/2 - y)] 

+ exp [q(7/2 + y)] + exp [q(9/2 + x)], 

F 4 = exp [q(3/2 -- x)] + exp [q(5/2 - z)] + exp [7q/21 

+ exp[q(9/2 + z)] + exp [q ( l l / 2  + x)], 

where q = --2ztis. e. 

Since Pu  -- e, for this case, we use (33) (neglecting 
terms of order one) to calculate all points 0 < y < 2.4, 
except those for which (tp) = 0, (7 = 0, lc, 2c); these 
were calculated by (42). The resulting scattering 
pattern (actually the interference function) is compared 
with that reported by Beyeler (1976) in Fig. 4. The 
agreement with experiment is good. However, there is a 
great reduction in labor involved in application of the 
matrix method (equation 33) rather than the difference 

method (equation 26). Thus, the four model cells 
contain 17 atoms (a vacancy can be considered an 
atom with a form factor of zero), and to evaluate 
( F .  * F,,+,,,) in (20) is equivalent to manipulating the 
elements of a 17 x 17 matrix (equation 27). With the 
use of the matrix formulation (equation 33), setting up 
the problem, as illustrated above, is trivial. 

It should be pointed out that there are several 
qualitative differences between the scattering expected 
for an ordered linear lattice (equation 35) and for one in 
which R > 1, e.g. hollandite. The intensity for the case 
R = 1 is of the order of N z, while that for R > 1 (and 
e i~, not all equal) is of the order of N. The profiles of 
the planes of diffracted intensity for R = 1 are a sharp 
function of 7, and can be indexed on a single repeat 
distance. For R > 1, the diffuse planes can sometimes 
be indexed approximately (see for example Beyeler, 
1976), but are not periodic in the same sense as those 
for R = 1. The profiles predicted by (33) for R > 1 are 
often appreciably larger than those for the Bragg peaks. 
These conclusions are not peculiar to the case of linear 
disorder, but can be reached for disorder problems of 
any dimensionality (Guinier, 1963). 

6. Conclusions 

The number of linearly disordered systems involving 
well-defined groups of atoms is increasing rapidly (see, 
for example, Miller & Epstein, 1976). In particular, the 
use of iodine or bromine as an oxidant to bring about 
high conductivity in stacked metal systems is of 
increasing importance (Marks, 1978). Although 
spectroscopic methods provide some clues as to 
halogen species present in the chains (e.g. I% 12, I~-, I~-) 
and hence to the formal oxidation state of the metal, 
diffuse scattering of X-rays is much more sensitive to 
the state of order of the chains. The matrix method 
offers some very real advantages over the difference 
equation method in the interpretation of diffuse 
scattering from these and other systems in which there 
is linear disorder. One advantage is the natural way in 
which rigid linear groups are incorporated into the 

" "~) 0 . 1 5  
- - ~  

~ ) '  (~) ' 6  0 . 3 7  

. b. 6 . 6  t 037 

$.._ ._G' o .3_ 61o,,_. 
Fig. 3. Vacancy and displacement scheme for a four-cell model of 

the state of order of the potassium ion chain in hollandite. Group 
existence probabilities are also given. 
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Fig. 4. Comparison of the experimental ( . . . )  and calculated 
(equation 33) interference function in hollandite. The experi- 
mental values are from Beyeler (1976). 
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formalism by allowing for cells of different lengths. This 
is in contrast to the difference equation method where 
each member of a group must be treated separately. 
Another advantage of the matrix method is its ready 
adaptability to computational methods. With the 
matrix method the diffuse scattering for a given model 
is readily calculated throughout reciprocal space. On a 
high speed computer the model is readily varied. 
Attempts are underway to refine such scattering 
models, based on the matrix method and diffuse X-ray 
data collected by counter methods. 

This research was supported under the NSF-MRL 
program through the Materials Research Center of 
Northwestern University (Grant DMR76-80847). 
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Abstract 

A procedure is described whereby crude atomic 
coordinates obtained from a medium-resolution 
electron density map (~3-4  A) with the aid of 
Watson-Kendrew models may be refined to native data 
of near-atomic resolution using only a limited subset of 
the data and non-interactive computer graphics. This 
refinement procedure for the Bence-Jones protein Rhe 
included phase extension from 3.0 to 1.9 A and led to 
an improved crystallographic sequence for the protein. 
The structure was refined, by a stereochemically 
restrained least-squares technique in reciprocal space, 
to a residual value R F -- 0.284 for a model consisting of 
795 non-hydrogen protein atoms with an overall 
thermal factor using data with d ranging from 5.0 to 

0567-7394/79/050810-08501.00 

1.9 A. Relative weights for the structure factor and 
stereochemical-restraint observations were determined 
empirically and the optimum weights were found to be 
those which yield values of W I F  o -- Fcl 2 which are 
typically 4 to 6 times the value of W I d o - dz 12, where 
d o and d z are the current and ideal values for the stereo- 
chemically restrained parameters. It was found that 
reasonable refinement may be obtained with only 32% 
of the observed data. 

Introduction 

In the application of the method of multiple iso- 
morphous replacement, MIR, to the structure deter- 
mination of macromolecules, one is often confronted 
© 1979 International Union of Crystallography 


